MATHEMATICAL ENGINEERING TECHNICAL REPORTS Iterative proportional scaling via decomposable submodels for contingency tables

نویسندگان

  • Yushi ENDO
  • Akimichi TAKEMURA
  • Yushi Endo
  • Akimichi Takemura
چکیده

We propose iterative proportional scaling (IPS) via decomposable submodels for maximizing likelihood function of a hierarchical model for contingency tables. In ordinary IPS the proportional scaling is performed by cycling through the elements of the generating class of a hierarchical model. We propose to adjust more marginals at each step. This is accomplished by expressing the generating class as a union of decomposable submodels and cycling through the decomposable models. We prove convergence of our proposed procedure, if the amount of scaling is adjusted properly at each step. We also analyze the proposed algorithms around the maximum likelihood estimate (MLE) in detail. Faster convergence of our proposed procedure is illustrated by numerical examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative proportional scaling via decomposable submodels for contingency tables

We propose iterative proportional scaling (IPS) via decomposable submodels for maximizing likelihood function of a hierarchical model for contingency tables. In ordinary IPS the proportional scaling is performed by cycling through the members of the generating class of a hierarchical model. We propose to adjust more marginals at each step. This is accomplished by expressing the generating class...

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS A Localization Approach to Improve Iterative Proportional Scaling in Gaussian Graphical Models

We discuss an efficient implementation of the iterative proportional scaling procedure in the multivariate Gaussian graphical models. We show that the computational cost can be reduced by localization of the update procedure in each iterative step by using the structure of a decomposable model obtained by triangulation of the graph associated with the model. Some numerical experiments demonstra...

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Evaluation of per-record identification risk and swappability of records in a microdata set via decomposable models

We propose a strategy for disclosure risk evaluation and disclosure control of a microdata set based on fitting decomposable models of a multiway contingency table corresponding to the microdata set. By fitting decomposable models, we can evaluate per-record identification (or re-identification) risk of a microdata set. Furthermore we can easily determine swappability of risky records which doe...

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Fibers of sample size two of hierarchical models and Markov bases of decomposable models for contingency tables

We study Markov bases of hierarchical models in general and those of decomposable models in particular for multiway contingency tables by determining the structure of fibers of sample size two. We prove that the number of elements of fibers of sample size two are powers of two and we characterizes the primitive moves of Markov bases in terms of connected components of a certain graph defined fr...

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Hierarchical Subspace Models for Contingency Tables

For statistical analysis of multiway contingency tables we propose modeling interaction terms in each maximal compact component of a hierarchical model. By this approach we can search for parsimonious models with smaller degrees of freedom than the usual hierarchical model, while preserving conditional independence structures in the hierarchical model. We discuss estimation and exacts tests of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006